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Abstract

New applications and solutions are emerging as blockchain technology continues to prosper in different industries. However,
blockchain systems are considered isolated silos, especially when it comes to interoperability on systems putting restrictions on
handling private data.

We propose ODAP-AS, a resilient N-N cross-chain asset transfer protocol that enables the execution of N transfers of assets
in permissioned environments, leveraging the concept of gateways. Gateways act as the devices through which a blockchain
network can be accessed. We build our protocol on top of the Open Digital Asset Protocol (ODAP), and its crash recovery
mechanism, ODAP-2PC, a crash fault-tolerant protocol.

ODAP-AS also defines how one gateway is replaced by a backup in case of a crash. We implement a cross-chain asset transfer

across Hyperledger Fabric and Hyperledger Besu using Hyperledger Cactus, which takes approximately 20 seconds. Additionally,

we can conduct a sequential execution of ODAP-AS achieving 0.15 transactions/second throughput.
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Abstract—With the growing interest in blockchain technology,
researchers and developers in different industries are shifting
their attention to creating interoperability mechanisms. Existing
mechanisms usually encompass asset exchanges, asset transfers,
and general data transfers. However, most of the solutions
based on these mechanisms only work for two permissionless
blockchains falling short in use cases requiring more complex
business relationships. Also, contrary to existing legacy systems,
there is little standardization for cross-chain communication.
Here we present MP-SATP, a resilient multi-party asset transfer
protocol built on top of the Secure Asset Transfer Protocol
(SATP). Furthermore, we enhance SATP’s crash recovery mech-
anism that directly influences the reliability and performance
of our solution. Using MP-SATP, we show how to perform N-
to-N resilient asset transfers in permissioned environments by
decoupling them into multiple 1-to-1 asset transfers. Our results
demonstrate that the latency of the protocol is driven by the
latency of the slowest 1-to-1 session; and how the usage of backup
gateways avoids the overhead caused by rollbacks. Enterprise-
grade environments such as supply-chain management systems
can immediately leverage our solution to perform atomic multi-
party asset transfers as shown by our use case.

Index Terms—asset transfer, cross-chain, interoperability,
multi-party, SATP

I. INTRODUCTION

Interest in blockchain technology has risen since the ap-
pearance of Bitcoin [1] in 2008. Since then, many other cryp-
tocurrencies and crypto-related projects were created, mainly
in permissionless (public) networks. In the last few years, we
have been witnessing a shift of attention to permissioned (or
private) blockchains [2], where enterprises spread out across
multiple industries have been adopting the technology [3].
Finance, healthcare, copyrights, and supply chain are some
examples [4], [5].

A blockchain can be defined as an immutable distributed
ledger, composed of a sequence of blocks that are cryptograph-
ically dependent on one another through cryptographic hash
functions – in a way that if there is a change in one block, all
the succeeding ones are invalidated. Blockchains can differ in
multiple aspects, being the most obvious the security, privacy,
and scalability guarantees [6].

To fully unlock the potential of a service provided to
clients, it is essential to design a blockchain solution that
can adapt to the unique requirements of each industry [7].
What may be deemed necessary in one industry may not
hold the same significance in another, making the concept of
a single blockchain governing the entire world impractical.
Therefore, it becomes essential to incorporate interoperability
mechanisms that facilitate cross-blockchain (or just cross-
chain) communication, providing the foundational elements

for seamless interaction and collaboration between different
blockchain networks.

Blockchain Interoperability protocols fill this gap, allow-
ing a source chain to change the state of a target chain
through cross-chain transactions [3]. Several studies [3], [8],
[9] categorize the different interoperability modes into asset
exchanges, where assets in different blockchains are swapped
between parties, such as atomic swaps [10]; asset transfers,
where one asset is locked or burned (deleted) in the source
chain and a representation is minted (created) in the target
one [11]; and data transfers, where data is copied across
blockchains, for instance, through the use of oracles [12].

We identify and address two gaps in the literature. Firstly,
the majority of interoperability solutions focus on cross-
chain communication between two parties at most. While
some cross-chain communication protocols concentrate on 1-
to-1 transfers, others that involve multi-party interactions are
limited to asset exchanges through atomic swap protocols [10],
[13], [14]. Secondly, we recognize a lack of research on inter-
operability within permissioned networks. The prevailing solu-
tions are predominantly designed for permissionless networks,
assuming that involved parties can access each other’s internal
state. In permissioned networks, unless explicit permission
is given to all parties before the protocol, such protocols
are deemed unpractical. Permissioned blockchains typically
operate with decreased decentralization and employ consensus
mechanisms that offer instant finality. These radically change
the underlying trust assumptions and architectural design of
cross-chain protocols. Notably, use cases like Delivery vs Pay-
ment (DvP) [15] or Central Bank Digital Currencies [16] are
built upon permissioned networks, highlighting the importance
of addressing interoperability challenges in this context.

We motivate the need for multi-party asset transfers using an
example based on supply-chain management systems, which
is further explored as a supply-chain use case in Section V. In
this scenario, multiple business relationships are established
within the supply chain network. For instance, a supplier may
have individual agreements with various wholesalers, offering
different pricing based on the products or volume of units
purchased. Additionally, wholesalers may form partnerships
with each other to devise tailored business strategies or col-
laborate on product creation. To elaborate, consider a scenario
with two wholesalers and two producers. Each wholesaler
initiates cross-chain transactions with their respective producer
to facilitate payment for the goods shipped the other way
around. Furthermore, the wholesalers rely on each other to
assemble a final product, as different components (from both)
are required.



In this scenario, one must address a potential issue where
one party may refuse to pay its producer while the other
already completed its transfer. This situation can lead to one
party paying for goods that will be unutilized due to the lack
of cooperation from the other wholesaler. In this complex
supply chain network, consisting of multiple interconnected
subnetworks or blockchains, there is a need to enable multi-
party blockchain interoperability. Atomicity in this setting en-
sures that all parties involved can execute their asset transfers
simultaneously, preventing one party from refusing to proceed
when the others go through.

In response to the identified gaps in the literature, we present
a novel solution called MP-SATP, which stands for Multi-
Party Secure Asset Transfer Protocol. MP-SATP is specifi-
cally designed for permissioned networks and facilitates the
transfer of multiple assets among N parties. Building upon
the foundation of the Secure Asset Transfer Protocol (SATP),
an ongoing work within the Internet Engineering Task Force
(IETF), MP-SATP operates as a gateway-based protocol. Its
primary objective is to enable atomic, fair, and consistent
cross-chain asset transfers across participating ledgers.

One notable contribution of MP-SATP is its emphasis
on cross-chain standardization, as it paves the way towards
establishing immediate and consistent interoperation among
diverse blockchains. This addresses a critical requirement
in the current landscape where interoperability solutions are
tailored for specific ledgers or use cases. To the best of
our knowledge, MP-SATP represents the first multi-party
blockchain interoperability solution dedicated to asset transfers
between permissioned networks while also focusing on cross-
chain standardization.

To further enhance the resilience of our proposed solution,
we introduce a new primary-backup mode that enhances the
gateway crash recovery procedure. This additional feature
ensures a more robust and reliable system in the face of
gateway failures, thereby augmenting the overall resiliency of
MP-SATP.

This paper is structured in the following way. The back-
ground knowledge necessary for the understanding of this
paper is presented in Section II. We present MP-SATP in
Section III, and the primary-backup mode of SATP in Sec-
tion IV. A use case using promissory notes is presented next
in Section V. Section VI presents the implementation and
evaluation details. Lastly, we present the Related Work and
draw our conclusions in Sections VII and VIII.

II. BACKGROUND

This section introduces the building blocks for MP-SATP.
We walk through some of the most important blockchain
interoperability concepts, the gateway-based architecture for
interoperability; and finally SATP and its crash recovery
mechanism.

A. Cross-Chain Asset Transfers

Solutions that perform cross-chain asset transfers follow
roughly the same scheme: an asset is locked or burnt in the
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Fig. 1. Gateway-based architecture for blockchain interoperability. (1) Gate-
ways have read and write access to a network; (2) Client applications can
request gateways to perform asset transfers; (3) Gateways initiate sessions
with other gateways to run a gateway-to-gateway protocol, such as SATP.

source chain, and either some asset is unlocked in the target
chain, or a representation of the original one is minted there.
The difference between locking and burning is tied to the
concept of permanent or temporary transfers. In a permanent
transfer the asset is permanently deleted in the source chain,
whereas in a temporary transfer, it remains locked until it is
transferred back. We represent a cross-chain transfer of an
asset a between party A and party B as A a→ B.

In this paper, we consider the case of permanent asset
transfers, where an asset is burnt in the source chain, and
a representation is created in the target one – i.e., with no
obligation of being brought back to the original one.

B. Gateway-Based Blockchain Interoperability

Reference [17] proposes a singular perspective when think-
ing about interoperability architectures. The authors apply the
same fundamental goals and architecture as in the early days
of the Internet. At the time, the solution proposed to scale up
and interconnect different networks was to implement border
gateway routers. These routers provided entry points to each
network. Mapping the concept to blockchains, a gateway-
based architecture assumes one or more gateways deployed
in front of each network that mediates traffic to/from each
blockchain the same way routers forward data packets between
networks. Gateways can thus be considered facilitators for per-
forming cross-chain transactions. These gateways are owned
and operated by specific entities that bear legal responsibility
and adhere to regulatory compliance requirements relevant to
the transferred assets. As trusted entities, gateways are well-
suited for implementation within permissioned environments,
where strict control and accountability are essential.

Figure 1 depicts the gateway architecture. There are three
different APIs defined for a gateway: (1) a DLT-specific to
interact with the ledger it has access to; (2) a client-specific
API to receive requests from client applications; and (3) one
that is reached by other gateways, to initiate gateway-to-
gateway interactions. As an example, SATP is a gateway-to-
gateway protocol. Note that the execution of the gateway-to-
gateway protocol is always initiated by client applications.

C. Secure Asset Transfer Protocol (SATP)

The Secure Asset Transfer Protocol (SATP – previously
called Open Digital Asset Protocol) [18] is being worked
on at the Internet Engineering Task Force (IETF). It appears
as the “first cross-chain communication protocol handling



multiple digital asset cross-border transactions by leveraging
asset profiles (the schema of an asset) and the notion of
gateways.” [19]. One of the goals for SATP is to enable
communication across different domains – distributed ledgers,
databases, or legacy systems.

In SATP, clients instantiate gateway-to-gateway interactions
to perform asset transfers. Considering a source gateway
GS , and a recipient gateway GR, an SATP session can be
represented as GS

satp→ GR.
There are four phases in the protocol:
0) Identity and Asset Verification Flow: gateways mutually

verify their identities and the identities of their owners,
ensuring that both gateways are valid (if gateways use
trusted hardware this can be performed through attesta-
tion techniques);

1) Transfer Initiation Flow: gateways exchange the com-
munication terms and rules, making verifications re-
garding their jurisdictions and the asset that is being
transferred;

2) Lock-Evidence Verification Flow: the asset being trans-
ferred is locked, and a piece of evidence is presented to
the other party;

3) Commitment Establishment Flow: the involved gate-
ways commit the changes and terminate the asset trans-
fer. The commitment corresponds to the deletion of the
asset in the source blockchain, and the creation of a
representation in the target blockchain.

Note that all communication is done through a trusted com-
munication channel using, for example, TLS.

D. SATP Crash Recovery Protocol

HERMES [19] proposed the crash recovery mechanism
that allows any party running SATP to recover from a crash
when exchanging messages to guarantee consistency across
both blockchains. This mechanism leverages logs generated
before and after each sent and received message. However, it
is important to note that it focuses solely on crash failures
and does not address Byzantine behaviour, which involves
malicious deviations from expected protocol execution.

According to the authors, when a crash occurs, the Recovery
Procedure must be triggered by the recovered gateway or a
backup one. Therefore, there are two possibilities when a gate-
way crashes: 1) self-healing: the crashed gateway recovers and
re-establishes communication with the counter-party gateway;
or 2) primary-backup: a backup gateway resumes the execution
of the protocol if the crashed gateway does not recover within
a bounded time δt. The existing specification only mentions
the necessity of such procedures, not proposing any concrete
solution. In Section IV, we address this gap.

On the other hand, if there is no response from a gateway or
its backup within δrollback, s.t. δt < δrollback, there must be a
rollback to ensure termination in a consistent state. A rollback
is equivalent to issuing transactions with a contrary effect to
the ones already issued [19]. When the crashed gateway or
its backup is finally alive, it runs the Recovery Procedure, in

which it learns the rollback performed by the other gateway.
A rollback is triggered as well to guarantee consistency.

III. MP-SATP: MULTI-PARTY CROSS-CHAIN ASSET
TRANSFERS

In this section, we present the building blocks for MP-SATP,
a multi-party asset transfer protocol built on top of SATP.
MP-SATP performs N-to-N transfers of assets through their
decomposition in coordinated 1-to-1 SATP transfers.

A. General Assumptions

In this section we present the general assumptions in which
we model MP-SATP:

• Gateways abide by regulatory compliance concerning the
assets being transferred, being suitable for permissioned
environments. In case of disputes, third-party audit enti-
ties can request asset transfer evidence.

• The underlying blockchains are live and safe – i.e. any
valid transaction broadcast will eventually be added to
the blockchain, and every correct node will eventually
converge to a single truth.

• For a successful transfer, all clients involved in a multi-
party asset transfer have previously agreed on transferring
their assets, and authorize the respective gateway to act
on their behalf. This is done through a shared transfer
context.

• We bound the latency of any message by δt. This means
that if no message is received within δt, it is assumed
that a gateway has crashed.

B. Notation

Here we define the notation used to model our protocol.
Furthermore, hereafter the concepts are presented based on an
example, which is depicted in Figure 2. Let us consider a set
of clients C = {C1, C2, C3, C4} that want to engage in a multi-
party asset transfer. Each client Ci has a wallet in blockchain
Bi, thus, we consider blockchain B1, B2, B3, and B4. For
simplicity, but without loss of generality, we only consider
two transfers between elements of C, C1

a1→ C2 and C3
a2→ C4;

these represent the transfer of asset a1 from C1 to C2, and the
transfer of asset a2 from C3 to C4. The goal is to ensure the
atomicity of both transfers – i.e. either both succeed or both
fail.

We also leverage gateways as entry points for the underly-
ing blockchains, therefore, we denote as Gi a gateway with
read and write access to Bi, that will be reached by Ci to
initiate cross-chain transfers. There may be multiple gateways
connected to the same network which are used to parallelize
cross-chain transactions and can also serve as backups to one
another. We represent a backup gateway for G1 as G′1 (not
represented in Figure 2).

C. System Model

As mentioned in Section III-A, clients are assumed to agree
on the assets being transferred off-chain (e.g. match orders in
an off-chain forum), building a graph D1 = (V1, E1), where V1



Fig. 2. Example of multi-party asset transfers between clients (C1, C2, C3,
C4) through the respective gateways. Asset a1 is initially owned by C1 and
a2 by C3

is a finite set of vertexes, and E1 is a finite set of edges between
elements of V1. V1 is the set of parties (clients C) involved in
the multi-party cross-chain asset transfer. Additionally, E1 is
the list of cross-chain asset transfers between elements of V1.
Each cross-chain transfer is a tuple (CS , CR, a), where CS is
the source client, CR is the recipient client, and a is the profile
of the asset being transferred. In Figure 2, E1 = {(C1, C2, a1),
(C3, C4, a2)}.

The communication between clients, and consequently, be-
tween blockchains must be enabled through an interoperability
mechanism [8]. In this solution, we leverage gateways as this
component. Given that gateways run a gateway-to-gateway
protocol, a mapping between each client and their respective
gateways must exist. Therefore, in the gateway layer, the graph
D1 must be translated into a graph D2 = (V2, E2) where V2
is the set of gateways that represent each client, and E2 is the
previous list of cross-chain asset transfers concatenated with
the respective gateways. This time, each cross-chain transfer
is a tuple (CS , CR, GS , GR, a), where CS is the source client,
CR is the recipient client, GS is the source gateway, GR is
the recipient gateway, and a is the profile of the asset being
transferred. In the given example, one would have E2 = {(C1,
C2, G1, G2, a1), (C3, C4, G3, G4, a2)}.

Note that the assets being transferred in a single multi-party
cross-chain asset transfer session can be heterogeneous; they
might concern different fungible or even non-fungible assets.

D. MP-SATP Session Context

We have previously stated that clients authorize their gate-
ways to act on their behalf for that specific asset transfer.
This is done leveraging the concept of a session context ctx.
It is calculated by hashing (through a cryptographic hash
function H) the concatenation of the graph D2, with the
current timestamp ts, which avoids replay attacks. This context
is then sent by each Ci to the corresponding Gi along with the
graph D2.

ctx = H(V2 || E2 || ts)

E. Protocol

MP-SATP is illustrated in Figure 3. Any client can initiate
the protocol within its local gateway. In the above example, we
assume that client C4 initiates MP-SATP by sending a request

Return

1. <..., mp-satp-prepare, a1>

0. <..., mp-satp-init, ctx>

1. <..., mp-satp-prepare, a2>

3. <...mp-satp-prepare-ack, a1>
3. <...mp-satp-prepare-ack, a2>

4. <..., mp-satp-commit, a2>

6. <..., mp-satp-commit-ack, a2>
6. <..., mp-satp-commit-ack, a1>

4. <..., mp-satp-commit, a1>

2. SATP (UNTIL LAST COMMIT)

5. SATP COMMIT / ROLLBACK

Fig. 3. MP-SATP session initiated by a client Ci. In this example we consider
G1

satp→ G2 and G3
satp→ G4, where G4 was elected as the coordinator.

to G4. This particular gateway is referred to as the coordinator
throughout the protocol. To initiate the transfer, the coordinator
sends an mp-satp-init message containing the relevant context
(ctx) to all the gateways involved in the asset transfer.

The protocol is further divided into two phases, assimilating
with two-phase commit protocols: the prepare and completion
phases. For clarity, we divide the completion phase into the
commit and rollback phases according to the result of the
prepare phase. Note that in the worst-case scenario, every
client application requests its local gateway to initiate MP-
SATP, however, the prepare phase guarantees that only one
can be run successfully.

1) Prepare Phase: The coordinator is responsible for ini-
tiating an MP-SATP session with every source gateway GS in
the asset transfers list E2, through a mp-satp-prepare message.
In Figure 2, G4 sends a mp-satp-prepare to G1 and G3, the
source gateways in each cross-chain asset transfer. This first
message includes the data necessary for each gateway to start
its SATP 1-to-1 session with the corresponding counterparty
gateway. This assimilates to the message sent by clients in
a normal SATP 1-to-1 session when initiating a gateway-to-
gateway interaction. Hence, after receiving the message, G1
and G3 initiate an SATP session with G2 and G4, respectively.
This can be translated into G1

satp→ G3 and G2
satp→ G4. At

this point, we are under the assumptions of SATP and its
crash recovery mechanism, i.e. if there is a crash in one
gateway the crash recovery procedure is executed, or in the
worst case scenario the rollback. These gateways run SATP
only until the end of phase 2, the Lock-Evidence Verification
Flow. Every ai in E2 should be locked in the corresponding
source blockchains, which marks the end of the prepare phase.
To indicate their readiness to proceed to the next phase,
each source gateway in every SATP session acknowledges
the coordinator, which gathers a set of mp-satp-prepare-ack
responses with a boolean indicating the success or failure
of the initial stage. If every gateway responds positively, the
commit phase is initiated, otherwise, the rollback phase.



2) Commit Phase: If MP-SATP reaches the commit phase,
every SATP session is ready to commit. Committing in a
SATP session corresponds to deleting the locked asset in
the source chain, and creating a representation of that asset
in the target one. Therefore, the coordinator sends a mp-
satp-commit message to every client gateway in E2. In each
SATP session, the third (and last) phase is run. After the
completion, a final mp-satp-commit-ack message is sent to
the coordinator stating the success of the cross-chain transfer.
Upon receiving a success message from every 1-to-1 SATP
session, the coordinator can return to the client.

Note that the only reason why we need the first mp-satp-
init message is for the recipient gateways (i.e., G2) to have
knowledge of the initiation of the transfer and accept incoming
SATP transfers according to the context provided by the client.

3) Rollback Phase: When MP-SATP reaches the rollback
phase, at least one SATP session is not ready to commit. The
coordinator sends a mp-satp-rollback message, which initiates
the rollback in each SATP session. This includes issuing
transactions that have the inverse effect of those that have
previously been issued (e.g. if the asset was previously locked
in the source blockchain, a transaction unlocking it must be
issued to guarantee a consistent state across blockchains).

The communication between the coordinator gateway and
every other gateway is done through the exchange of MP-
SATP messages, whose format is specified in the following
box.

MP-SATP Message Format

1) Version: MP-SATP protocol version;
2) Message Type: each message has a predefined

schema (e.g., urn:ietf:mp-satp:msgtype:mp-satp-
prepare);

3) Context ID: unique identifier representing an
MP-SATP session;

4) MP-SATP Phase: the current phase of the pro-
tocol (init, prepare, commit, rollback);

5) Sequence Number: an increasing counter that
uniquely represents a message from a session;

6) Coordinator Gateway ID: the public key of the
coordinator;

7) Recipient Gateway ID: the public key of the
gateway interacting with the coordinator;

8) Payload: any necessary payload including the
profiles of the assets subject to transfer;

9) Message Hash: the cryptographic hash of this
message;

10) Signature: the signature of this message;

IV. ENHANCING SATP CRASH RECOVERY

Given that our protocol is built on top of SATP, we also
propose an enhancement to its crash recovery mechanism, di-
rectly impacting the guarantees of our solution. HERMES [19]
proposes a crash fault-tolerant protocol for SATP. The authors
of the paper assume that any gateway recovers from crashes

within a defined bound of time, but in case of severe malfunc-
tions (e.g. hardware failure), it might not be possible to recover
within the defined amount of time, compromising atomicity.
We remove the assumption that no gateway will ever crash
indefinitely, and introduce backup gateways that are capable
of resuming the execution of protocol on behalf of the crashed.
Hence, we propose an extension to the existing protocol, where
the main goal is to define how a backup gateway can build
trust with the counterparty’s gateway to resume the execution
of the protocol.

A. Data Replication

To guarantee that a gateway can resume the execution of
a SATP session, it needs to be up-to-date with the latest
logs. The log storage infrastructure can be either centralized
(e.g., locally or in the cloud) or decentralized (e.g., an IPFS
network). Either way, given the possibility of dealing with
private information, data must not be stored in cloud providers
or IPFS networks unencrypted. To avoid the leakage of this
information we leverage a primary-secondary scheme in which
the primary gateway replicates log entries to all the backup
gateways, and only the hashes of the logs are published to
other platforms for integrity checks and eventual auditabilities.

B. Protocol Description

To demonstrate the solution we assume only one SATP ses-
sion, given by G1

satp−→ G3. The proposed enhancement is based
on X.509 certificates, therefore, we consider that every gate-
way has a valid X.509 certificate that was issued by its owner
– the entity legally responsible for the gateway. Moreover, in
the extensions field of the certificate, there is a list containing
the hash of the authorized backup gateways. Assuming G′1 and
G′′1 backup gateways for G1, the extensions field of G1’s X.509
certificate is given by LG1

= [H(Cert(G′1)),H(Cert(G′′1 ))],
where H(m) represents the cryptographic hash of m, and
Cert(G) represents the X.509 certificate for gateway G.

As mentioned in Section III-A, if G1 does not send any
message for δt, G′1 assumes the crash of G1. To avoid rollbacks,
G′1 contacts G3 before δrollback to resume the execution of the
open SATP session. The main issue here is how G3 knows that
G′1 is authorized to replace G1 and resume the execution of the
protocol. The solution proposed is based on three validations
conducted by G3:

1) The certificate of G′1 must be valid – checked by running
a certification path validation algorithm [20], which
includes validating all the intermediate certificates up
to a trusted root.

2) the parent certificate of both G1 and G′1 certificates is the
same. In other words, both certificates must have been
issued by the same institution, which proves they belong
to the same legal entity.

3) G′1’s certificate hash belongs to the list specified in G1’s
certificate extensions which indicates a set of gateways
that are eligible to be the backup gateway in the case of
a crash – i.e., H(Cert(G′1)) ∈ LG1 . This is set by each
entity when issuing a certificate for a gateway.



V. USE CASE USING PROMISSORY NOTES

We present a supply chain use case that would benefit from
the implementation of our proposals, where multiple parties
engage in a multi-party asset transfer.

A promissory note can be defined as a promise “made
by one or more persons to another, engaging to pay a
certain sum of money subject to certain requirements as
to the promise” [21]. Replacement bills or notes issued by
central banks can be substituted and must be signed by the
promisor [22]. Recent advances in the financial industry have
focused on the digitalization of promissory notes and their
integration into blockchains, given that paper promissory notes
are hard to track and require hand signatures [23], [24].
Furthermore, the concept of promissory notes in the inter-
operability of the blockchain-based on gateways was already
proposed by [19], [24].

As we have been remarking through this paper, gateway-
based interoperability solutions fit in the permissioned en-
vironment of enterprise solutions. Gateways are identified
entities within an organization and comply with the existing
regulations/legal frameworks imposed by the organization’s
home jurisdiction, making them suitable for this use case.
We, therefore, present an example where a gateway-to-gateway
protocol provides the building blocks for inter-jurisdiction
asset transfers.

We leverage the example provided by [19] and extend it
to realize an N-to-N atomic cross-jurisdiction asset transfer,
using MP-SATP. The base example consists of two entities, a
Producer (P) that sells goods to a Wholesaler (W). P issues an
invoice for value V to W, which should be paid in a maximum
of 90 days. Since P might not want to wait 90 days for the
payment, it can request a promissory note stating that W will
pay V to P in 90 days. This promissory note can now be sold
by P to a third party.

Gateways can facilitate the transfer of promissory notes
between different jurisdictions while abiding by the regulations
on each end. Given this base illustration, we extend it to
demonstrate MP-SATP in a similar supply chain example as
depicted in Figure 4. Two wholesalers – W1 and W2 – form a
consortium that, among other products sold individually, sells
products in partnership. W1 and W2 depend on the products
sold by two producers – P1 and P2 – respectively.

When P1 sells goods to W1, P1 issues an invoice for value
V1, and requests a promissory note PN1 stating the debt. The
same happens between P2 and W2, with respect to a value V2.

Given that W1 and W2 depend on one another to sell their
final products, W1 might not want to go into debt (buying
and issuing a PN1 to P1) unless W2 also buys the necessary
amount of goods from P2. We can therefore represent this
problem as two independent asset transfers that need to be

performed atomically: W1
PN1→ P1, and W2

PN2→ P2.
Considering GP1 as P1’s gateway, GP2 as P2’s gateway,

GW1 as W1’s gateway, and GW2 as W2’s gateway we can
leverage MP-SATP to perform multi-party cross-jurisdiction
asset transfers GW1

satp→ GP1 and GW2
satp→ GP2, atomically.

Producer 1 Wholesaler 1
Promissory Note 1

Depend on one 
another for 

delivery of final 
product

Promissory Note 2
Producer 2 Wholesaler 2

MP-SATP coordinates both transfers

SATP sessionApp communicationOff-Chain communication

Fig. 4. Producer 1, Producer 2, Wholesaler 1, and Wholesaler 2 engaging in
a multiparty asset transfer using MP-SATP.

VI. IMPLEMENTATION & PERFORMANCE EVALUATION

We implement MP-SATP in Hyperledger Cacti [25] in the
form of a business logic plugin. We also develop the core
SATP plugin and its crash recovery mechanism, given that our
work is dependent on them. The total implementation reaches
approximately 30k lines (including tests) of code and is
expected to be merged into the main code base of the project in
the near future. Furthermore, we present an initial evaluation of
our proposals, including the overall latency of MP-SATP with
asset transfers between Hyperledger Fabric and Hyperledger
Besu networks. Finally, we show the performance gained
through our primary-backup solution.

A. Hyperledger Cacti

Cacti is a project under the Hyperledger ecosystem. It allows
users to make an adaptable and secure integration of different
blockchains and provides a pluggable architecture that enables
the execution of ledger operations across as many blockchains
as needed. It leverages ledger connectors that serve as APIs
to the underlying ledgers. One major advantage of using Cacti
is that it is capable of handling the integration of both public
and private blockchains. At the date of writing, the project has
more than 1.5 million lines of code, 264 stars, and 223 forks
on GitHub.

B. Architecture

We present a simplified architecture of the solution in
Figure 5. Cacti offers support for API Servers, that receives a
list of plugins – a plugin registry – and exposes the endpoints
provided by those plugins. Communication between clients
is performed off-chain. In this implementation, each gateway
is represented by a business logic plugin (SATP plugin)
that has multiple connections: 1) the local database to store
logs generated by the execution of the protocol; 2) an IPFS
connector to an IPFS network, which is used as decentralized
log storage to guarantee availability and integrity of the
logs; 3) ledger connectors that make possible the interaction
with the underlying blockchains in the form of transactions.
Each gateway has a different blockchain connector, providing
interfaces for different blockchains.

We enhanced the SATP plugin and developed from scratch
the MP-SATP plugin. The latter has a direct connection to
the SATP plugin that initiates 1-to-1 transfers. The MP-SATP
plugin contains the logic for every stage of the protocol
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Fig. 5. MP-SATP and SATP Implementation architecture in Hyperledger
Cacti. We represent in green our contributions. We leverage the Hyperledger
Besu connector and the IPFS connector available in Cacti.

specified in Section III, and its algorithm is depicted in
Algorithm 1. i stands for the index in the array E2, and t
for every asset transfer tuple. Recall from Section III-C that
each asset transfer in E2 is represented as (CS , CR, GS , GR,
a).

Algorithm 1: MP-SATP algorithm
Input: E2
Result: True
numberTransfers← E2.length();
prepareResponses← [0..numberTransfers];

foreach (i, t) ∈ E2 do
prepareResponses[i]← t.GS .initSATPAsync(t)

wait() ; // wait for every response
for i← 0 to numberTransfers do

if prepareResponses[i] ̸= true then
foreach t ∈ E2 do

t.GS .rollbackSATPAsync(t);
wait() ; // wait for every rollback
return False;

foreach t ∈ E2 do
t.GS .commitSATPAsync(t)

wait() ; // wait for every commit
return True;

C. Testing Environment

All tests were run in a Google Cloud Compute Engine VM
instance composed of 4 vCPUs, and 20 GB of memory, having
a Boot Disk mounted using an Ubuntu 20.04 image, and a 100
GB SSD. As previously mentioned in Section VI, we leverage
a Besu and a Fabric connector in Cacti. Hence, for testing
purposes, we utilized the respective all-in-one Docker images
available in Docker Hub. Every result presented in this section
is the average of 100 independent runs.

D. MP-SATP Evaluation

We perform the evaluation of the protocol in two experi-
ments using at most 10 different networks given the constraints
of running multiple blockchains in a single machine. We start
by creating an MP-SATP session composed of 5 asset transfers
between Hyperledger Besu networks. Figure 6 (a) depicts the
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Fig. 6. (a) latency of running a single SATP session between Besu networks;
(b) latency of running MP-SATP transferring 5 assets between Besu networks;
(c) latency of running a single SATP session between a Fabric and a Besu
network; (d) latency of running MP-SATP transferring 5 assets: 4 between
Besu networks and 1 between a Fabric and a Besu network.

latency of one 1-to-1 SATP session between two different
Besu networks; Figure 6 (b) depicts the latency of one MP-
SATP session composed of 5 asset transfers between different
Besu networks. The MP-SATP session has a slight overhead
compared to the single 1-to-1 session, which is caused by the
communication between the coordinator and every participant.
The prepare phase in MP-SATP takes around one more second
than phases 1 and 2 together in a single SATP session because
the coordinator waits for all SATP sessions to return before
sending the mp-satp-commit message. We hypothesise that the
overall latency will always be tied to the latency of the slowest
SATP session – i.e., with the highest latency.

In the second experiment, we replaced one of the 5 SATP
transfers between Besu networks with an asset transfer be-
tween Fabric and Besu, to observe the change in the overall
latency. Figure 6 (c)) depicts the latency of one 1-to-1 SATP
session between a Fabric and a Besu network. Transactions
take longer to be confirmed in the Fabric network, which
explains the difference to Figure 6 (a)). To confirm our
previous hypothesis we run MP-SATP where 4 transfers are
still between Besu networks, and one is between a Fabric and
a Besu network. Figure 6 (d) confirms our hypothesis.

These findings lead us to the predicted conclusion that
the latency of such a protocol is strongly related to the
confirmation times of the ledgers – i.e., the SATP session with
the highest latency drives the total latency of an MP-SATP
session. Formally, the latency of an MP-SATP session is given
by max([Lat(E12 ), Lat(E22 ), ..., Lat(En2 )]), where Lat(E i2) is
the latency of the ith cross-chain asset transfer in E2.

E. SATP’s Crash Recovery Enhancement

To understand the importance of our contribution to SATP’s
crash recovery mechanism through the primary-backup mode,
we analyze the worst-case scenario with and without our
solution. The worst-case scenario is a crash happening at the
end of SATP’s last phase, which would require triggering the
rollback procedures. Firstly, we ran SATP without our solution.
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We simulated the crash of the source gateway and let the target
gateway timeout triggering the rollback procedure. We set it to
9 seconds – i.e., δrollback = 9sec. When the crashed gateway
recovers, it learns the rollback performed by the other gateway
through the recovery procedure and rolls back as well.

In the second experiment we simulate the crash of the
source gateway, however, this time we ensure there is a backup
gateway that resumes the execution of the protocol right after
δt = 5sec (before δrollback). The backup gateway, up to date
with the logs, only needs to run the recovery procedure and
continue the execution of the protocol. Given that we simulate
the crash in the last messages exchanged by gateways, as soon
as the recovery procedure terminates, the protocol terminates
as well. Without our proposal, the protocol terminates as
it started (because all transactions were reverted) and takes,
on average, around 46.3 seconds. With backup gateways, no
rollback shall ever be triggered due to gateway crashes and
the asset is successfully transferred to the target chain taking,
on average, 25 seconds. The results are depicted in Figure 7.
Choosing the right parameters δt and δrollback is critical for
the success of this proposal. The difference between timeouts
(δrollback − δt) must be enough for a backup gateway to
retrieve the stored logs, reconstruct the SATP session, and
send the initial recovery message to the counterparty gateway,
to avoid the latter to rollback.

VII. RELATED WORK

Here we present similar work that has been done to inter-
operate multiple blockchains.

Polkadot [26] and Cosmos [27] enable the interconnection
of different chains through the Cross-Chain Message Passing
Protocol (XCMP) [28], and the Inter-Blockchain Communi-
cation protocol (IBC) [29], respectively. XCMP enables the
interoperation with more than two heterogeneous blockchains,
however, IBC can only interoperate with up to two hetero-
geneous blockchains. These solutions can only interoperate

blockchains in the same ecosystem which limits communica-
tion with the rest of the world.

Herlihy [10] proposed multi-party atomic cross-chain
swaps, using HTLCs; however, it requires some assumptions.
A cross-chain swap is modelled as a strongly connected
directed acyclic graph, whose vertexes are parties and arcs are
proposed asset transfers. The solution requires 1) a specific
deployment order of smart contracts; 2) there can not be a
cycle in the graph of transactions; 3) and most importantly,
it cannot guarantee that an honest party does not lose its
assets in case of a temporary crash. ACW3N [30] appears
as a solution for some of these issues with the introduction
of a witness network where proofs are published, and where
the global state is stored which can only be changed with a
multi-signature from all involved parties. Lilac [13] proposes
a multi-party asset exchange scheme, where assets can be
locked in parallel. These solutions do not seamlessly work
in permissioned blockchains unless access to those chains has
been granted beforehand to every party involved in the swap.

Luo et al. [31] suggest an inter-blockchain architecture
for routing management and transfer of messages between
blockchains that requires a third-party blockchain. Fynn et
al. [32] propose Move that enables the transfer of smart
contracts between blockchains built on top of the EVM, by
leveraging 2PC; however, it only focuses on 1-to-1 interac-
tions. Wang et al. [14] also leverage 2PC to conduct transac-
tions across N blockchains, however, the safety and liveness
properties are not yet theoretically proved. If the coordinator
crashes, atomicity is only guaranteed through the assumption
that eventually a new coordinator is elected. Reference [14]
presents a centralized component that performs actions in
multiple blockchains based on a 2PC.

Some solutions also leverage Trusted Execution Environ-
ments (TEEs) [33]–[35] to perform cross-chain transactions,
but they are limited to only two blockchains. These solutions
provide more security guarantees in the relayers but lack
scalability guarantees due to the physical restrictions imposed
by the trusted hardware.

VIII. CONCLUSION

Because there are no solutions for the multi-party asset
transfer problem focused on permissioned environments, this
paper proposes MP-SATP, a protocol based on a 2PC to
ensure coordination between the various entities and built on
top of the Secure Asset Transfer Protocol (SATP). MP-SATP
launches and coordinates multiple SATP sessions on multiple
assets agreed upon by the clients. Additionally, we propose an
improvement to the existing SATP’s crash recovery procedure,
in the primary-backup mode. From the implementation and
evaluation of our proposals, we show that MP-SATP guar-
antees atomicity and finality properties. Additionally, with the
use of gateways, one can guarantee the auditability of transfers
of assets performed between gateways and compliance with
legal frameworks. We also present a supply chain use case
that would benefit from these new proposals.
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